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Abstract
A mesoscopic theory for the primitive model of ionic systems is developed for
arbitrary size, λ = σ+/σ−, and charge, Z = e+/|e−|, asymmetry. Our theory is
an extension of the theory that we developed earlier for the restricted primitive
model. The case of extreme asymmetries λ → ∞ and Z → ∞ is studied in
some detail in a mean field approximation. The phase diagram and correlation
functions are obtained in the asymptotic regime λ → ∞ and Z → ∞, and
for infinite dilution of the larger ions (volume fraction np ∼ 1/Z or less). We
find a coexistence between a very dilute ‘gas’ phase and a crystalline phase
in which the macroions form a bcc structure with the lattice constant ≈3.6σ+.
Such coexistence was observed experimentally in deionized aqueous solutions
of highly charged colloidal particles.

1. Introduction

For many years, theoretical studies of phase behaviour in ionic solutions have been focused
mainly on the special case of the restricted primitive model (RPM), in which half of the
equal-sized charged hard spheres carry positive charge and half carry negative charge of equal
magnitude, with the ions assumed to be dissolved in a structureless solvent [1–4]. Even the
simplest real ionic solutions have some degree of size asymmetry, but with some notable
exceptions [5–7] a common tacit assumption has been that the effects of weak and moderate
asymmetry in both size and charge is not important to phase behaviour. Recently, the size-
and charge-asymmetric case has drawn increasing attention [8–19]. Most extensions beyond
the RPM are based either on the Debye–Hückel theory and Poisson–Boltzmann equation, or
on the mean spherical approximation. These theories [15–19] as well as simulations [8–14],
are typically limited to the case of small differences in sizes and charges. Only in very recent
simulations have moderate [12] and large [13, 14] asymmetries been studied. Moreover, these
theories are all ‘classical’ (i.e., mean field-like), and none of them are designed to describe
the special Ising-like behaviour that is known to characterize the primitive model in its critical
region. The development of a theory that does describe that behaviour was sketched by one of
us in [20] and further developed in [21] and [22]. A field-theoretic method that also yields the
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correct Ising-like behaviour was given by Ciach and Stell in [23] and further developed in our
subsequent papers [24–27]. The mesoscopic theory described in this paper is an extension of
the theory given there, and reduces to it when applied to the restricted primitive model.

In the case of extreme asymmetry (charge and diameter ratios between the two kinds of
ions tend to infinity) the PM potentials describe highly charged colloidal particles suspended
in a structureless solvent containing one kind of counterions and no coions. The physical
properties of such a system are significantly different to those of the usual electrolytes. Highly
asymmetric systems exhibit an interesting phase behaviour which is neither fully described nor
understood, but it is clearly quite different to that of the RPM. In particular, formation of a
colloidal bcc crystal with large interparticle separation coexisting with voids [28–32], various
crystals formed by oppositely charged colloidal particles [33], and other anomalies [32, 34, 35]
have been observed. The experimental findings suggest the existence of effective attractions
between like-charged macroions as a possible explanation of the observed phase behaviour.
The classic Derjaguin–Landau–Verwey–Overbeek (DLVO) theory [36, 37], however, predicts
purely repulsive interactions between the like-charged colloids. In recent approaches
geometrical effects, as well as fluctuations and correlations are included [38, 39, 39–45]. The
approaches are based e.g. on integral equations [40, 41], density functionals [39, 44, 45], and
variational methods [38]. The effective attractions appear in a modified DLVO theory [46], and
will also result from the explicit inclusion of various effects, such as ‘charge regulation’ [40],
excluded volume (‘Coulomb depletion’) [43], metastable states [42] etc. On the other hand,
‘volume terms’ considered in [47] lead to a phase separation for purely repulsive interactions.
Some of the above-mentioned works are questioned by authors of the other papers. In
particular, the modification of the DLVO theory developed in [46] was criticized on theoretical
grounds in [48, 49]. Because many experimental observations were interpreted [31, 32] in
terms of the modified DLVO potential [46], the question of the phase behaviour of the highly
charged colloidal systems is very controversial. The controversies are also associated with
contradictory experimental results for the same systems. For example, in [50] gas–liquid-type
separation was reported and explained on the basis of the modified DLVO potential [46]. The
experiments for the same system were repeated in [51]. No such transition was observed in an
absence of transport processes. It goes beyond the scope of our paper to discuss the above-
mentioned approaches and experiments in more detail; extensive lists of recent works and
discussions can be found in [38, 39, 45, 52]. The void–bcc crystal coexistence was observed
experimentally in several systems with different sizes and charges of the particles [28–31], and
different experimental techniques were used. However, such a transition has not been predicted
theoretically, and the issue is still controversial. In theoretical approaches to colloidal systems
one typically assumes extreme size asymmetry between the macroions and microions, and the
methods differ from those developed for the RPM or for the PM with a small asymmetry.

In principle it should be possible to analyse the evolution of phase diagrams when the
size and charge ratios increase from unity to infinity. To achieve this goal one needs a
theory applicable to arbitrary size and charge asymmetries for the PM potentials. Within
the context of Ornstein–Zernike formalism, one can go quite far in obtaining the general
structure of such a theory, from which a number of important general results follow, such as
the relation between the charge–charge and density–density correlation lengths, which shows
that they must diverge together in the asymmetric case [7]. However, quantitative results
for the thermodynamics and structure of systems of asymmetric ions are very sensitive to
approximations and assumptions [15–17, 38, 39]. In fact one often needs to know the results
to make proper assumptions, i.e. to identify the physical effects that have to be explicitly
taken into account (association [15], ‘border zone’ [16] and cluster [17] formation, ‘charge
regulation’ [40], ‘Coulomb depletion’ [43], ‘volume terms’ [47] etc). Recently developed field
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theory for asymmetric ions, based on the Hubbard–Stratonovich transform [53–55], is elegant
and in principle exact. In practice, however, the phase equilibria and correlation functions can
be obtained by using different approximate methods. In [53] the size of ions is taken into
account through the single cut-off in the Fourier space. Since in ionic systems the dominant
fluctuations are short-range charge-density waves [56], the short-distance properties of the
system are important, and this approximation may lead to inaccurate results. Moreover, the
effect of size asymmetry cannot be studied in the theory with a single microscopic length.
In [55] the hard spheres are taken into account more directly, and the charges are smeared inside
the spheres to regulate the Coulomb potential. Formal expressions and relations are derived for
arbitrary asymmetry, but in the general case they are very complex (and depend on the smearing
function) and the author restricts the analysis of the thermodynamics and structure to the case
of equally sized ions. Reliable theory allowing for a determination, with a reasonable effort,
of phase equilibria and structure in the case of arbitrary asymmetry between the ions has not
been developed yet. Therefore the crossover between the case of full symmetry and the case
of extreme asymmetry is an essentially unexplored problem. The PM in the crossover region
might be an appropriate model for ionic liquids, and it certainly deserves attention.

In a tractable theory simplifying assumptions and approximations are unavoidable. The
key issue is to identify the degrees of freedom relevant for phase transitions and critical
phenomena (i.e. along the spinodal lines), and to develop a theory which takes them into
account correctly, with the irrelevant degrees of freedom treated in an approximate way. In
order to describe phase transitions where ordering occurs at the length scales large compared
to molecular sizes, a coarse-graining procedure, leading to the Landau–Ginzburg–Wilson
(LGW) approach, has been introduced. The basic assumption of the LGW theory is that for
macroscopic phase separation the short-wavelength fluctuations, and hence the precise form of
correlations at distances r ≈ σ are irrelevant. In the case of simple fluids a correlation function
can be thought of as being the sum of two pieces—the piece that is on the scale of the distance
between particles plus the piece that is on the scale of the correlation length, which is arbitrarily
large close to the spinodal, and it is only the latter piece that determines universality class and
critical exponents. One can neglect the short-range behaviour of correlation as long as one is
in a critical region (but only then).

In the coarse-grained description one considers deviations from random distributions of
molecules, and it is important to include the dominant, most probable fluctuations. In simple
fluids these correspond to macroscopic separation, i.e. to fluctuations with the wavenumber
k → 0 in the Fourier representation. Because like-charged ions repel, and oppositely
charged ions attract each other, in ionic systems charge-ordered clusters, where positive- and
negative-charge ions are the nearest neighbours, are observed in real space [12, 57]. In the
Fourier representation the dominant fluctuations are charge-density waves [23, 56]. Thus, the
fluctuations associated with charge ordering in periodic structures should be included in the
coarse-grained description.

The idea of coarse graining was successfully extended by Brazovskii [58] and others to
soft-matter systems (liquid crystals, microemulsions, diblock copolymers), where microphase
separation occurs, i.e. periodic phases with a mesoscopic period of density oscillations may
become stable. A mesoscopic period means a period of order of several molecular diameters
or larger. In this case one expects that the phase equilibria should be qualitatively correctly
described, provided that the fluctuations on the length scale corresponding to the ordering are
included. Again, the correlation function consists of a short-distance piece and of the piece that
oscillates on the mesoscopic scale and decays on the scale of the correlation length, which is
arbitrarily large close to the spinodal. It is the latter piece that determines the phase transitions,
as in simple fluids. The separation into the short- and long-distance pieces of the correlation
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function can be conveniently done by a pole analysis in the complex Fourier space [20, 59–61].
The dominant pole (or a pair of complex conjugate poles) with the smallest imaginary part
determines the asymptotic large-distance behaviour. It turns out that this dominant pole (or a
pair of poles) describes quite correctly the correlation function down to the second maximum
for short-range [59] and for Coulombic interactions [60–62]. In the coarse-grained mesoscopic
theories the remaining poles of the correlation functions are neglected. Note, however, that
down to the second maximum in the correlation functions the neglected poles lead to a small
correction to the correlation function, and the results of the Landau-type, mesoscopic theories
work well for such distances, although for distances r � σ they are meaningless. To conclude,
if one is interested in the vicinity of the spinodal line and in the large-distance part of the
correlation functions (but only then), and one wants to take into account the possibility of
ordering at distances corresponding to the second maximum of the correlation function or
larger, one can consider the mesoscopic Landau–Brazovskii theory.

Here we propose to extend the mesoscopic field theory introduced for the RPM in [23]
to the case of arbitrary size and charge asymmetry. The results of our field theory agree with
simulations [63–67] in continuum-space RPM [24, 26], on the sc and the fcc lattices [26, 68],
and on finely discretized versions of the former [26, 27], and also in the presence of additional
short-range attractive [69] and repulsive [26, 68] interactions. Moreover, the electrostatic free
energy has a correct behaviour for low densities, and the exact result in the Debye–Hückel
limit is correctly reproduced [25]. So far no example of qualitatively wrong predictions of the
mesoscopic theory has been found, although in some cases (including the RPM in continuum
space) the effect of fluctuations has to be properly taken into account [26, 27, 68]; this can
be done systematically in the perturbation theory. Foundations of the mesoscopic theory
do not depend on the symmetry properties between the ionic species. On the basis of the
results obtained for different extensions of the RPM one can hope that an extension to the
case of arbitrary asymmetry will also result in a predictive theory yielding correct results on a
semiquantitative level.

In this work we introduce the general framework of the mesoscopic theory for the PM
(section 2). Next, in section 3, we focus on the case of extreme asymmetry, which turns out to
be particularly simple. We find the phase behaviour and compare it with experimental results
for highly charged colloidal particles in salt-free water [28, 32, 35]. We find good agreement
with experimental results on a semiquantitative level. We also derive the correlation functions
for extremely asymmetric case and show their forms for various thermodynamic states. We
obtain monotonic decay of correlations for very dilute system, and results consistent with
electric double-layer formation for less dilute systems. Near the transition to the bcc structure
the double layer becomes denser and thinner. We find a pronounced maximum of the colloid
correlation function at distances that agree with experimentally observed ordering [32]. At such
distances the clouds of counterions around the particles do not overlap. Our results indicate
that the theory developed for arbitrary asymmetry leads to qualitatively correct predictions in
two opposite limiting cases—fully symmetric (RPM) [23–26, 68] and extremely asymmetric.
Hence, we can expect qualitatively correct results in the crossover region as well. The results
in the case of arbitrary asymmetry will be described elsewhere.

2. Mesoscopic theory for the PM

2.1. Coarse-graining procedure

We consider the PM electrolytes with the diameter and charge ratio between the large and small
ions

σ+/σ− = λ and e+/|e−| = Z (1)
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respectively (without a loss of generality we assume e− = −|e−|, e+ = |e+|). For Z = λ = 1
the model reduces to the RPM, and for Z , λ → ∞ the model describes highly charged colloid
particles and point-like counterions with a small charge. In the PM the interaction potential of
a pair α, β = ± is infinite for distances smaller than the sum of radii,

σαβ = (σα + σβ)/2, (2)

i.e. we assume hard-core repulsions. The electrostatic potential Vαβ(r1 − r2) between the pair
of ions α, β is

Vαβ(r) = eαeβ
Dr

θ(r − σαβ), (3)

where D is the dielectric constant of the solvent (water). The θ -functions above exclude the
contributions to the electrostatic energy coming from overlapping hard spheres.

In our field-theoretic, coarse-grained approach, we consider local instantaneous densities
of the ionic species, ρα(r), i.e. we specify the numbers of ions of both kinds per mesoscopic
volume dr. For given densities ρα(r) precise positions of the ions can be different, and the
probability density p that the local densities assume a particular form ρ+(r), ρ−(r) is given by

p[ρα(r)] = �−1
∫
Sp

e−βE(Sp), (4)

where β = (kT )−1, and where T and k are temperature and the Boltzmann constant
respectively. By

∫
Sp

we denote an integral over all microscopic states Sp compatible with
the chosen densities ρ+(r), ρ−(r), and by E(Sp) we denote the energy of the corresponding
microstate. The energy of the microstate Sp can be written in the form E(Sp) = U [ρ+, ρ−] +
�E p(Sp), where U [ρ+, ρ−] = ∫

Sp
E(Sp)/N is the mean energy for fixed densities ρ+(r),

ρ−(r), and N = ∫
Sp

is the number of all microscopic states compatible with ρ+(r), ρ−(r). We
assume that for all microscopic states compatible with the given local densities the energy of
the whole system is approximately the same, so that β�E p(Sp) � 1. Hence,

e−βE(Sp) = e−βU [ρ+,ρ−][1 − β�E p(Sp)+ 1
2 (β�E p(Sp))

2 + · · · ], (5)

and the probability (4) can be written in the form

p = �−1e−βU [ρ+,ρ−][N + corr
]
. (6)

The correction term is proportional to
∫
Sp
(β�E p)

2 � N and will be neglected. Finally, we
assume that for particular fields ρ+(r), ρ−(r) the electrostatic energy is given by

U [ρ+, ρ−] = 1
2

∫
dr1

∫
dr2 ρα(r1)Vαβ(r1 − r2)ρβ(r2), (7)

where the summation convention for Greek indices is used. The fields ρα(r) for which U → ∞
occur with the probability p → 0. Hence, in macroscopic regions the charge neutrality
condition ∫

drρ+(r)e+ =
∫

drρ−(r)|e−| (8)

must be obeyed. One can easily verify that when (8) is satisfied for uniform fields ρα(r) =
const, then U [ρ+, ρ−] = 0. Due to thermal motion the charge neutrality can be violated in
mesoscopic regions containing a small number of ions. The energy (7) associated with local
deviations from the charge neutrality remains finite.

When �E(Sp) can be neglected (i.e. for all microscopic states compatible with ρα(r) the
energy is approximately the same), we can use the Boltzmann formula N = exp(βT S), where
by S we denote entropy. In an open system the probability is also proportional to the activities
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exp[β(µ+N++µ−N−)], where Nα = ∫
dr ρα(r) is the number of ions of the species α, and the

chemical potentials µα are not independent—they have to be consistent with the requirement
of the charge neutrality (8). The above discussion shows that the local instantaneous densities
assume the form ρ+(r), ρ−(r) with the probability density given by

p = �−1 exp(−β	MF[ρ+, ρ−]), (9)

where 	MF[ρ+, ρ−] is the grand potential in the system where the local concentrations of the
two ionic species are constrained to be ρ+(r), ρ−(r). Next we assume that the entropy is
determined by the hard-core reference system with the Helmholtz free energy Fh = −T S, and
	MF[ρ+, ρ−] is assumed to have the form

	MF[ρ+, ρ−] = Fh[ρ+, ρ−] + U [ρ+, ρ−] −
∫

drµαρα(r). (10)

For the reference system we assume the local density approximation Fh[ρ+, ρ−] =∫
dr fh(ρ+(r), ρ−(r)). The fh consists of the ideal-gas contribution plus the excess free-

energy density of hard spheres with different diameters f ex
h . For example, the Percus–Yevick

approximation for hard-sphere mixtures [70] can be adopted. Because of the above assumption,
packing effects of hard spheres cannot be described in our theory, and in the present form
it is not applicable to very high densities. In principle, extensions beyond the local density
approximation are also possible.

In the field theory introduced above the physical quantities are obtained by averaging over
all fields ρ+, ρ− with the Boltzmann factor (9). The average densities and the correlation
function are respectively given by

〈ρα(r)〉 = �−1
∫

Dρ+
∫

Dρ−e−β	MF[ρ+,ρ−]ρα(r) (11)

and

Gαβ(r, r′) = 〈ρα(r)ρβ(r′)〉 − 〈ρα(r)〉〈ρβ(r′)〉 (12)

with

〈ρα(r)ρβ(r′)〉 = �−1
∫

Dρ+
∫

Dρ−e−β	MF[ρ+,ρ−]ρα(r)ρβ(r′), (13)

and

� =
∫

Dρ+
∫

Dρ−e−β	MF[ρ+,ρ−]. (14)

The grand potential 	 is

−β	 = log�. (15)

In practice we are not able to evaluate the functional integrals in equations (11), (13) and
(14), and we need to make approximations. In the simplest, mean field (MF) approximation
the average values of the local densities are approximated by their most probable values, ρ0α,
and the grand thermodynamic potential is approximated by the minimum of 	MF[ρ+, ρ−] at
ρα = ρ0α .

As convenient thermodynamic variables we choose dimensionless number density of all
ionic species, s, and dimensionless temperature T ∗ = 1/β∗, where

s = π

6
(ρ∗

0+ + ρ∗
0−), β∗ = β

e+|e−|
Dσ+−

, (16)

and

ρ∗
α = σ 3

+−ρα. (17)
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Here and below as a length unit we choose σ+−. Because of the charge neutrality,

ρ∗
0− = Zρ∗

0+, (18)

the volume fraction of ionic species is

ζ = π

6
(ρ0+σ 3

+ + ρ0−σ 3
−) = 23(λ3 + Z)

(1 + λ)3(1 + Z)
s. (19)

Let us study the form of 	MF in more detail. For small deviations �ρ∗
α(r) = ρ∗

α(r)− ρ∗
0α

of the local densities from their most probable values the grand potential (10) can be expanded
about its value 	MF

0 at the minimum,

�	MF = 	MF −	MF
0 = 	MF

2 +	MF
int . (20)

Here 	MF
2 denotes the Gaussian part of the functional. In the Fourier representation we have

β	MF
2 = 1

2

∫
dk
(2π)3

�ρ̃∗
α(−k)C̃0

αβ(k)�ρ̃
∗
β(k) (21)

where �ρ̃∗
α(k) is the Fourier transform of �ρ∗

α(r), and the wavenumbers are in σ−1
+− units. The

second functional derivatives of 	MF, C̃0
αβ(k), consist of two terms,

C̃0
αβ(k) = aαβ + β Ṽαβ(k). (22)

The first term is given by the corresponding second derivative of β fh taken at ρ∗
α = ρ∗

0α . The
second term in C̃0

αβ(k) is the Fourier transform of the potential (3), and we find

β Ṽαβ(k) = eαeβ
e+|e−|

4π cos(krαβ)

k2
β∗, (23)

where rαβ = σαβ/σ+−. The remaining part of the functional has the expansion

β	MF
int =

∫
dr

[
aαβγ

3! �ρ
∗
α(r)�ρ

∗
β(r)�ρ

∗
γ (r)+ aαβγ δ

4! �ρ∗
α(r)�ρ

∗
β(r)�ρ

∗
γ (r)�ρ

∗
δ (r)

]
+ · · · ,

(24)

where

aαβγ = ∂aαβ
∂ρ∗

γ

and aαβγ δ = ∂aαβγ
∂ρ∗

δ

, (25)

and the derivatives are taken at ρ∗
α = ρ∗

0α. For pair potentials and for the local density
approximation for the reference system, 	MF

int is strictly local. The explicit forms of the
coefficients depend on the reference system.

2.2. Phase transitions

Let us focus on the boundary of stability of the uniform phase. The uniform phase is unstable
with respect to fluctuations ρ̃∗

α(k) when the second functional derivative of 	MF is not positive
definite, i.e. det C̃0

αβ(k) < 0. The temperature at the instability with respect to the k-mode is
thus given by

det C̃0
αβ(k) = 0. (26)

Boundary of stability with respect to the deviations �ρ∗
α ∝ cos(r · k) from the densities ρ∗

0α
corresponds to k = kb such that the equation (26) is satisfied first when the temperature is
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decreased. For fixed ρ∗
0α the boundary of stability is thus given by the maximum of T ∗(k)

obtained from (26), therefore kb can be determined from the equations

∂(det C̃0
αβ(ki))

∂ki
= 0. (27)

Solutions of the set of equations (26) and (27) give both, the wavevector of the critical
fluctuations kb, and the spinodal line in the phase space (s, T ∗). For temperatures higher than at
the spinodal line the randomly chosen instantaneous local densities are most probably uniform.
For lower temperatures, however, the randomly chosen instantaneous densities most probably
have a form of planar waves with the wavevector kb, or of linear combinations of such waves
with different orientations of the wavevectors. The amplitudes of the density waves of the ionic
species and the order of the associated phase transition depend on the form of 	int. In the next
section we shall find the phase transition in the case of extreme asymmetry in MF.

2.3. Correlation functions

Let us consider the structure of the disordered phase, i.e. the correlation functions for the
density deviations from ρ∗

0α . In our mesoscopic theory, especially in the local density
approximation, the correlation functions defined in equation (13) are meaningful for distances
larger than σαβ , and in principle we can only expect a semiquantitative agreement with results
of exact theories or simulations for large distances. The pole analysis of the correlation
functions in the Fourier representation shows that in the mesoscopic theory for the RPM only
the dominant poles, characterizing the long-distance behaviour, are present [61]. On the other
hand, the dominant poles yield quite accurate results down to the second maximum of the
correlation functions [60, 62], and for such distances we can expect semiquantitatively correct
results in the colloid limit as well. However, the functional integrals in equation (13) cannot be
calculated exactly. In practice we are able to calculate Gαβ(r) in a perturbation expansion in
γ2n,m . In the Gaussian approximation, �	MF = 	MF

2 , i.e. with the term 	MF
int in equation (20)

neglected, the correlation functions (13) can be easily calculated by inverting the matrix of
second functional derivatives of 	MF. In the Fourier representation we have thus

G̃0
αβ(k) = [

C̃0(k)
]−1

αβ
. (28)

The functions analogous to pair distribution functions are related to Gαβ (equation (13)) by

gαβ(r) = Gαβ(r)

ρ∗
0αρ

∗
0β

− δ(r)δKr
αβ

ρ∗
0α

+ 1. (29)

Beyond the Gaussian approximation we expect corrections to the correlation functions. Their
relevance in different thermodynamic states will be studied in future works.

3. Case of extreme asymmetry

The above model can be applied to a suspension of highly charged colloid particles in a (salt-
free) solvent containing one kind of point-like counterions. In the case of extreme asymmetry
the reference system corresponds to a mixture of hard spheres and point-like species, with the
densities constrained according to equation (18). For λ → ∞ the volume fraction ζ reduces to
the volume fraction np of the large species, and in the asymptotic regime Z → ∞ (such that
Z/λ3 → 0) we obtain (see (19), (18) and (16)),

ζ = np = 8s/Z . (30)
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Hence, finite values of the number density, s = O(Z 0), correspond to infinite dilution of hard
spheres for Z → ∞. At infinite dilution a hard-sphere system can be approximated by an ideal
gas. The smaller ions are point-like in the limit λ → ∞, and also behave as an ideal gas. Thus,
for λ, Z → ∞ we can assume that the reference system is just a mixture of ideal gases. For a
mixture of ideal gases aαβ = δKr

αβ /ρ
∗
0α, and from equations (16) and (18) we obtain

a−− = 1

ρ∗
0−

= π

6s
, a++ = 1

ρ∗
0+

= π

6s
Z , a+− = 0. (31)

Strictly speaking, in our analysis we assume that λ → ∞ first, and next we consider the
asymptotic behaviour of Z → ∞ with s = O(Z 0). The above asymptotic behaviour will be
referred to as the colloid limit. From equation (23) we easily find that in the colloid limit the
electrostatic potentials are

β Ṽ++(k) = O(Z), β Ṽ+−(k) = O(Z 0), β Ṽ−−(k) = O(Z−1). (32)

Hence, in the colloid limit we obtain

C̃++(k) = ZC̃p(k), C̃+−(k) = β Ṽ+−(k) = O(Z 0), C̃−−(k) = π

6s
+ O(Z−1)

(33)

and in turn

det C̃αβ(k) = Z
π

6s
C̃p(k)+ O(1), (34)

where

C̃ p(k) = π

6

[
1

s
+ 24 cos(2k)

k2
β∗

]
. (35)

3.1. Stability of the disordered phase

Instability of the disordered phase, in general given in equation (26), for Z � 1 is equivalent
to [

C̃ p(k)
π

6s
+ O(Z−1)

]
= 0, (36)

and for Z → ∞ the latter equation is satisfied when C̃ p = 0. From equation (33) we obtain
that if C̃ p = 0, then C̃++(k) = 0 for arbitrarily large Z . This means that in the considered
asymptotic regime of Z → ∞ and np = O(Z−1), the fluctuations �ρ̃+(k) can destabilize the
uniform phase. The line of instability of the uniform phase with respect to these fluctuations,
given by (26) and (27), assumes the form

C̃ p(k) = 0 = ∂C̃ p(k)/∂k. (37)

The spinodal line is given by the explicit expression

T ∗
b (s) = −24 cos(2kb)

k2
b

s, tan(2kb) = 1

kb
, (38)

and we find kb ≈ 1.23 in σ−1+− units.
In order to determine the phase transition associated with the spinodal (38), let us consider

the asymptotic behaviour of 	int (equation (20)) for Z → ∞ with s = O(Z 0) and λ → ∞.
For the reference system corresponding to a mixture of ideal gases the only nonvanishing
coefficients in equation (20) are (see equation (31))

aααα = − 1

ρ∗2
0α

, aαααα = 2

ρ∗3
0α

. (39)
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After using equations (16) and (18) we obtain

β�	MF = Z

2

∫
k
�ρ̃∗

+(k)C̃ p(k)�ρ̃
∗
+(−k)

+
∫

r

[
Z 2 A3

3! �ρ∗3
+ (r)+ Z 3 A4

4! �ρ∗4
+ (r)+ · · ·

]
+ O(Z 0), (40)

where

A3 = −
(
π

6s

)2

, A4 = 2

(
π

6s

)3

, (41)

and by O(Z 0) we denote all remaining contributions to �	MF with the integrands that remain
finite or tend to zero for Z → ∞. All integrands proportional to �ρ∗− turn out to be O(Z 0).
For Z → ∞ we neglect such terms compared to those given in equation (40). Note that we
again come to the conclusion that the phase transition in the colloid limit is determined only by
the macroion-density fluctuations. In the second step we rescale the field, �ρ̃∗+ = ψ̃/Z , and
the functional,�	[�ρ̃+,�ρ̃−] = 	r [ψ̃]/Z , and we obtain

β	r [ψ̃] = 1
2

∫
k
ψ̃(k)C̃ p(k)ψ̃(−k)

+ A3

3!
∫

k1

∫
k2

∫
k3

δ

(
3∑
i

ki

)
3∏
i

ψ̃(ki )

+ A4

4!
∫

k1

∫
k2

∫
k3

∫
k4

δ

(
4∑
i

ki

)
4∏
i

ψ̃(ki ), (42)

where we truncated the expansion in the field at the fourth-order term. Because the cubic term is
present, the transition to the phase with periodic ordering of the particles is first order in the MF.
A similar functional was already studied by Leibler in the context of block copolymers [71],
and we can directly use his results. In order to find the stable structure one considers ψ of
a form of linear superpositions of n planar waves with the wavevectors k j

b having different

orientations (with j = 1, . . . , n and |k j
b| = kb),

ψ̃(k) = �√
n

n∑
j

[
δ(k − k j

b)wn + δ(k + k j
b)w

∗
n

]
, (43)

where wn , w∗
n are complex conjugate and wnw

∗
n = 1. For ψ̃(k) of the form (43) the functional

	r (42) per volume V can be written as

β	r/V = C̃ p(kb)�
2 − α3�

3 + α4�
4, (44)

where the geometric factors α j depend on n and have been found in [71] for several structures.
For metastable structures 	r assumes local minima,

∂β	r/∂� = 0, (45)

and the stable structure corresponds to the global minimum. At the coexistence of the
disordered phase with the periodic structure

β	r = 0, (46)

and the actual phase transition occurs when the above equation is satisfied for this phase which
corresponds to the global minimum of β	r ; another words, for the phase which becomes stable,
equation (46) is satisfied at the highest temperature. From (44), (45) and (46) we obtain the
transition line as C̃ p(kb) = α2

3/(4α4). From the results of [71] it follows that in MF the
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Figure 1. The surface �ρ+(x, y, z) = 0, separating the regions of enhanced and depleted density
of particles. �ρ+(x, y, z) > 0 inside the droplets. The cubic unit cell with the lattice constant
a = 2

√
2π/qb is shown.

disordered fluid coexists with the bcc crystalline structure if A3 = 0. In the bcc arrangement
of colloids the wavevectors k j

b form edges of a regular tetrahedron, and for our particular case
α3 = 4A3/(3

√
6) and α4 = 5A4/8 [71]. The above results and equations (35) and (41) enable

us to obtain the explicit expression for the transition line in MF

T ∗ = −1.063
24 cos(2kb)

k2
b

s ≈ 13.1s ≈ 1.64Znp. (47)

The transition line (47) is valid only for np = O(1/Z), because our asymptotic analysis here is
restricted to s = O(Z 0).

In the colloid limit it is more convenient to use σ+ = 2σ+− as a length unit, and σ−1
+ as a

wavelength unit. To avoid confusion, the wavenumbers in σ−1
+ units will be denoted by q . In

real space the field (43) in the case of the bcc structure is for r = (x, y, z) in suitably chosen
coordinate frame given by

�ρ+(x, y, z) ∝ ψ(x, y, z) ∝ cos

(
qb(x + y)√

2

)

+ cos

(
qb(x + z)√

2

)
+ cos

(
qb(y + z)√

2

)

+ cos

(
qb(x − y)√

2

)
+ cos

(
qb(x − z)√

2

)
+ cos

(
qb(y − z)√

2

)
. (48)

In figure 1 the surface �ρ+(x, y, z) = 0 is shown. This surface separates the regions
with the particle density exceeding the average value from the regions of depleted particle
density. From (48) we see that the lattice constant a of the bcc structure is related to the critical
wavenumber qb by a = 2

√
2π/qb ≈ 3.6 in σ+ units. The distance between nearest neighbours

(nn) in the bcc crystal is
√

6π/qb ≈ 3.12σ+.
Let us focus on the two-phase region in the (np, T ∗) phase diagram. The gas-side boundary

of the two-phase region is given by the line (47). Let us determine the other boundary of the
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Table 1. Experimental results obtained in [28–30] for three colloidal systems, and predictions of the
theory developed in this work, for the same systems as in experiments. σ+ and Z denote the particle
diameter and valency respectively. T ∗, n̄p and ann denote the reduced temperature (equation (16)),
the average volume fraction in the sample and the measured nearest-neighbour distance in the bcc
crystal respectively. Finally, 3.12σ+ and np (gas) denote the calculated nn distance in the bcc phase
at the coexistence with the gas phase and the particle volume fraction in the gas coexisting with
the crystal respectively. The distance is given in nanometres (nm), the remaining quantities are
dimensionless. In [28–30] temperature is ∼20–30 ◦C and salt concentration is negligible. In our
theory no salt is present. For the system SS23, [28] the data for n̄p and ann are taken from the plot
in figure 2, and are not precise. For the system G5401 the data are taken from table II in [28], and
correspond to the smallest and the largest volume fraction that was investigated. In table II, [28],
ann(n̄p) is a monotonically decreasing function.

System σ+ Z T ∗ n̄p ann 3.12σ+ np (gas)

SS23 [28] 302 1.5 × 105 1.46 1 × 10−2 1000 942 5.9 × 10−6

SS23 [28] 302 1.5 × 105 1.46 2 × 10−2 750 942 5.9 × 10−6

G5401 [28] 419 2.5 × 105 1.2 7.5 × 10−3 1260 ± 70 1307 2.9 × 10−6

G5401 [28] 419 2.5 × 105 1.2 11.2 × 10−2 710 ± 60 1307 2.9 × 10−6

Ref. [30] 112 5.7 × 105 0.15 2.5 × 10−2 329 349 1.56 × 10−7

Ref. [29] 112 5.7 × 105 0.15 3.8 × 10−2 260 349 1.56 × 10−7

two-phase region (located at the higher densities). Note first that there are two particles per
cubic cell in the bcc structure. Moreover, the lattice constant at the coexistence with the gas
phase is a ≈ 3.6σ+. Thus, the particle volume fraction in the bcc crystal is

nbcc
p = 2

π
6 σ

3+
(3.6σ+)3

≈ 0.022. (49)

The particle volume fraction at the coexistence is independent of T ∗, and the two-phase
boundary on the bcc side is given by the vertical line np = 0.022.

In table 1, several typical experimental results [28–30] for large σ+ and large Z are
compared with our theoretical predictions. We compare the experimentally observed nn
distance ann in the ordered phase with our prediction ann ≈ 3.12σ+. We also quote the average
particle volume fraction, n̄p [28–30], which should be compared with nbcc

p ≈ 0.022. Note,
however that at the coexistence with the gas phase n̄p is expected to be smaller than nbcc

p ,
because of the presence of gas-occupied regions in the experimental vessels. On the other
hand, in the single-crystal samples n̄p can be larger than at the coexistence with the gas phase.
Accordingly, in the single-crystal phase off the phase boundary, ann should be smaller than
at the coexistence. The more the experimental volume fraction increases, compared to the
corresponding value at the phase coexistence, the larger should be the difference between the
measured ann and its value at the coexistence with the gas phase. As far as we know, the
particle volume fraction in the crystal phase at the coexistence with the gas phase has not been
determined experimentally.

Let us first focus on the systems such that n̄p � 0.022. In table 1 we can see quite good
agreement between the predicted (3.12σ+) and measured (ann) values of the nn distance. For
n̄p > 0.022 we see that 3.12σ+ − ann > 0 and increases for increasing value of n̄p − 0.022,
as expected. The above observations indicate that in the experiments nbcc

p ≈ 0.02, and that
ann ≈ 3σ+.

The above behaviour is not confirmed by simulations [12–14], where gas–liquid-type
separation with a critical point, rather than crystallization, has been observed. However,
in [12–14] the size and/or charge asymmetry is two–three orders of magnitude smaller than
in experiments.
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The asymptotic theory described above is strictly valid only in the colloid limit (λ → ∞
first and next the asymptotic behaviour for Z → ∞ with np ∼ 1/Z or smaller is considered).
Beyond the colloid limit the full set of equations (26) have to be solved. Since there are two
eigenmodes in the general case, both eigenvalues can vanish, leading to two spinodal lines
associated with two phase transitions. As will be shown in [72], the other spinodal is associated
with a gas–liquid separation. Beyond MF the crystallization may be pre-empted by the gas–
liquid separation, as is the case for the RPM [24, 26, 68]. The latter transition corresponds to
vanishingly low values of np and T ∗ in the limit Z , λ → ∞, therefore only the crystallization
survives in the colloid limit. Thus, although predictions of our theory in the colloid limit
disagree with the results of simulations (obtained beyond that limit) it is plausible that the
results of the full theory will agree with simulations for appropriate values of the asymmetry
parameters and for the corresponding regions in the phase diagram (np, T ∗). It is worth noting
that in snapshots shown in [12] clusters separated by ‘voids’ are clearly distinguishable.

3.2. Gaussian correlation functions

For temperatures lower than that given in equation (47) the periodic structure is stable. This
suggests effective attractions between like-charged macroions at the distances r ∼ 3σ+, at least
near the transition to the crystalline phase. In fact already the experimental discovery of void–
crystal coexistence and other anomalies [32] inspired a debate on the origin of the effective
attraction between like-charged particles [32, 38, 40, 42, 43, 47].

In the mesoscopic theory instead of effective interactions between the macroions in the
uniform phase we consider the correlation function G++(r1 − r2) defined in equation (12), and
related to the pair correlation function according to equation (29). Maxima of G++(r1 − r2)

indicate increased probability of finding a pair of colloid particles at the corresponding
positions. In the lowest order, Gaussian approximation (neglected 	int in equation (20)) the
correlation functions are given in equation (28), and in the colloid limit (i.e. for np ∼ 1/Z and
λ, Z → ∞) we find

G̃++(q) = T ∗

4Z

[
S + 4π cos q

q2

]−1

, (50)

G̃−−(q) = 6s

π
− 4π

Sq2

(
1 − 4π sin2(q/2)

Sq2

)
G̃++(q) (51)

and

G̃+−(q) = 4π cos(q/2)

Sq2
G̃++(q), (52)

where

S = πT ∗/(24s), (53)

and terms O(Z−2) have been neglected. Note that the q-dependent parts of the correlation
functions are all of the same order O(Z−1). The q-dependent parts of the functions (50)–(52)
multiplied by 4Zβ∗ are independent of Z , and depend on the thermodynamic state only through
S. In the colloid limit the functions 4Zβ∗Gαβ assume universal shapes along the straight lines
(53) in the phase diagram (s, T ∗), at least in the Gaussian approximation.

From the above result and from equation (18) it follows that for s = O(Z 0) the
corresponding g-functions (equation (29)) are g̃++ = O(Z), g̃+− = O(Z 0) and g̃−− =
O(Z−1). Note the strong dependence of these functions on the charge asymmetry resulting
from the difference in the number densities in the charge-neutral system.
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In real-space representation Gαβ(r) can be obtained by residue method [60, 61]. All the
functions have the same denominator, hence the same poles determine the decay lengths and
(where applicable) the period of damped oscillations. The form of G̃++(q) is similar to the
form of charge-density correlation function in the RPM, and the latter was studied in [61].
From the results of [61] it follows that for S > SK ≈ 11.8, where S = SK is known as the
Kirkwood line [60], there are two imaginary poles ia1 and ia2 in the upper half of the complex
plane, and

r Gαβ(r) = A(1)αβ e−a1r + A(2)αβ e−a2r . (54)

For S < SK there are two conjugate complex poles, q1 = α1 + iα0 and q2 = −q∗
1 with α0 > 0,

and [61]

r Gαβ(r) = Aαβ sin(α1r + θ)e−α0r . (55)

The poles can only be found numerically, except near the spinodal line [61]. Following the
analysis of [61] we find the characteristic lengths and the amplitudes. The correlation functions
4Zβ∗Gαβ are shown in figures 2–4 for three different regimes. In figure 2 we show the
correlation function above the Kirkwood line, i.e. for very dilute systems or for very high
temperatures. Figure 3 corresponds to S < SK, i.e. to denser system and/or lower temperatures,
but far from the phase coexistence. Finally, in figure 4 we show the correlation functions at the
coexistence with the bcc crystal.

From equation (54) it follows that for r � a−1
2 (where a2 > a1 and the numbers are

well separated) we recover the well known Yukawa-type decay of correlations (see figure 2),
expected for very dilute systems. In this regime the effective interactions between the
like-charged ions are purely repulsive, as in the DLVO theory and in the mean spherical
approximation [73–75].

In figure 3 we see a qualitative change in the shape of the correlation functions, which in
this part of the phase diagram exhibit oscillatory decay (55). Let us first analyse 4Zβ∗G+−(r)
and 4Zβ∗G−−(r). The 4Zβ∗G+−(r) assumes a maximum for r ≈ σ+/2 and then decreases
rather slowly for increasing r . For 2σ+ < r < 3σ+4, Zβ∗G+−(r) is negative, and assumes
a minimum for r ≈ 2.5σ+. At the same time 4Zβ∗G−−(r) > 0 for 1.5σ+ < r < 3σ+, and
assumes a positive maximum for r ≈ 1.8σ+. This means that the counterions are preferably
separated by distances 1.5σ+ < r < 3σ+, i.e. when there is more than enough room for a
colloid particle to be located between them. The behaviour of the two correlation functions
suggests a tendency for ordering in a structure where a diffuse cloud of counterions is formed
around the colloid particle. The cloud of counterions extends to the distance from the centre of
the colloid r ≈ 2σ+. For the distance from the centre of the colloid particle r > 2σ+ the density
of the counterions is depleted compared to ρ∗

0−. Let us turn to the 4Zβ∗G++(r). It assumes a
positive maximum at r ≈ 3σ+, indicating preferable location of the corresponding pair of ions
at such distances, consistent with formation of the cloud of counterions between them. Note
that the clouds surrounding the two colloid particles separated by r ≈ 3σ+ overlap weakly in
a small region around half the distance between the particles. The maximum of 4Zβ∗G++(r)
in figure 3 is only slightly larger than zero, and the tendency of the colloids to be separated by
such a distance is very weak.

Let us finally analyse the correlations in the uniform phase at the coexistence with the
bcc crystal. Note first that the phase coexistence (47) occurs quite close to the spinodal line
(38), where the amplitudes of the correlation functions diverge, and for S → S+

b behave
as ∼ (S − Sb)

−1/2 in the Gaussian approximation [61] (S is defined in equation (53), and
Sb = πT ∗

b /(24s)). Thus, the amplitudes of the correlation functions are large at the coexistence
with the crystal, and the fluid phase is strongly structured. To investigate this structure in
more detail, consider first 4Zβ∗G+−(r) and 4Zβ∗G−−(r). We find a rather large value of
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Figure 2. Correlation functions 4Zβ∗Gαβ(r) (dimensionless) in the uniform phase for S = 15,
i.e. for very strong dilutions. The inverse decay lengths in equation (54) are a1 = 1.265 and
a2 = 3.19. Distance is in units of the particle diameter. As discussed in section 2.3, results of the
mesoscopic theory for r � σ are not expected to be correct.

4Zβ∗G+−(r) for r ≈ σ+/2, namely 4Zβ∗G+−(σ+−) ≈ 0.737, and a rather fast decay of
G+−(r) for increasing r ; 4Zβ∗G+−(r) < 0 for 1.2σ+ < r < 2.5σ+. The counterion
correlation function 4Zβ∗G−−(r) assumes a maximum for r ≈ σ+, i.e. when the counterions
are located at the opposite sides of the colloid–particle surface. From the above observations
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Figure 3. Correlation functions 4Zβ∗Gαβ(r) (dimensionless) for S = 5, i.e. in the uniform phase
at larger densities, but still far from the transition to the bcc crystal. The characteristic lengths in
equation (55) are α0 = 1.45 and α1 = 1.72. Distance is in units of the particle diameter. As
discussed in section 2.3, results of the mesoscopic theory for r � σ are not expected to be correct.

we can deduce that the cloud of counterions becomes much denser and thinner, and is closely
attached to the particles. Consider now 4Zβ∗G++(r). A positive value of 4Zβ∗G++(σ+)
suggests effective attraction between the like-charged macroions at the distance of the closest
approach. Similar result was also found in [12]. This can only be possible if the point-like
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Figure 4. Correlation functions 4Zβ∗Gαβ(r) (dimensionless) for S = 1.712, i.e. in the uniform
phase at the transition to the bcc crystal. The characteristic lengths in equation (55) are α0 = 0.3
and α1 = 2.43. Distance is in units of the particle diameter. As discussed in section 2.3, results of
the mesoscopic theory for r � σ are not expected to be correct.

counterions are attached to the colloid surface, consistent with the formation of a thin and
dense layer of counterions around each colloid particle. The subsequent, positive maximum
of 4Zβ∗G++(r) occurs at r ≈ 3σ+. This maximum is much higher than away from the
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phase transition (figure 3), and suggests rather strong tendency for location of colloids at such
distances. Note that the clouds of counterions around the colloid particles separated by the
distance r ≈ 3σ+ do not overlap. The second maximum of 4Zβ∗G+−(r) at r ≈ 3σ+, i.e. at a
similar distance, shows again that each colloid particle is surrounded by a dense and thin cloud
of counterions.

The correlation functions gαβ were obtained in simulations [12] for Z = 10, λ = 19.
These asymmetry parameters are too small for our asymptotic regime λ, Z → ∞, and the
correction terms in equations (50)–(52) may well be of the same order as the terms which in
the asymptotic regime dominate. This may be an important source of discrepancy between
our theory and simulations. Also, we only obtained the Gaussian correlation functions in the
local density approximation. The main discrepancy between our results and the results of
simulations concerns the positions of the maxima of the correlation functions. Note, however
that in experiments the colloidal crystals are formed in the case of very strong size and charge
asymmetry [32], two–three orders of magnitude larger than those studied in simulations [12].

4. Summary and discussion

We have developed a mesoscopic theory for the PM with arbitrary size and charge asymmetry.
Our theory allows for systematic studies of phase transitions and structure for any charge and
size ratio. The results obtained in MF and Gaussian approximations can be improved by adding
fluctuation corrections obtained in perturbation theory.

Explicit results for phase transitions and structure in the uniform phase were obtained in
the colloid limit (λ → ∞ first, and next the asymptotic regime of Z → ∞ with np = O(1/Z)
is considered) in the MF approximation. We found a coexistence of a very dilute phase with
the bcc crystal formed by the colloid particles. The lattice constant was found to be a ≈ 3.6σ+.
Very strong dilution of colloids in the ‘gas’ phase, structure of the crystalline phase and the
lattice constant agree with experimental results. The correlation functions Gαβ(r) for density
deviations of the species α, β = ± at the distance r show the known monotonic decay for
large values of S defined in equation (53) (high temperatures T ∗ and/or low densities s). For
decreasing S the short-range order in the uniform phase increases.

In this work the analysis of the colloid limit is restricted to the MF approximation.
Inclusion of fluctuations will certainly change the quantitative results, in particular the location
of the phase transition. We expect that the fluctuations do not play a dominant role in the
colloid limit, but the role of fluctuations certainly deserves attention in future works. In the
full theory two spinodal lines occur, and coupling between the fields ρ̃∗+ and ρ̃∗− in �	MF may
lead to an increased role of fluctuations. By analogy with the RPM [23, 68] we expect that for
not too large values of λ, Z and/or for volume fractions larger than ∼1/Z , fluctuations may
induce significant shifts of the spinodal lines, including the change of metastable transitions
into stable ones and vice versa. Hence, beyond MF the crystallization may be pre-empted at
low concentrations and temperatures by the gas–liquid-type separation for certain values of Z
and λ. The role of fluctuations for different asymmetry parameters will be studied in future
works.

We should emphasize that the foundations of the mesoscopic description and the
asymptotic analysis for large asymmetry are based on first-principles considerations rather than
having been fitted to the results of experiments. Mesoscopic field theories turned out to be
appropriate for a description of a weak ordering, including a weak crystallization. Because
the unit cell of the experimentally observed bcc crystal [28] is rather large, one may expect
that the corresponding transition is not associated with close packing. The nearest-neighbour
distance in the ordered structure corresponds to the second maximum in the corresponding



Mesoscopic theory for size- and charge-asymmetric ionic systems: I 1647

correlation function in the uniform phase close to the phase coexistence. As the results of
mesoscopic theories are quite accurate down to such distances [59–61], it is plausible that in
this particular case our theory yields correct results on a semiquantitative level. Obviously,
our mesoscopic field theory has its limitations, and the structure for distances ≈σ cannot
be correctly reproduced, as is also the case in the commonly accepted Landau–Ginzburg–
Wilson and Brazovskii theories. Our theory should be considered as a contribution to the
discussion concerning the thermodynamics and structure in the charged colloidal systems.
Both the experiments and our theory show the formation of the bcc structure with a large unit
cell. To confirm that this is a real phenomenon it is desirable that microscopic theories and/or
simulations yield similar results.
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